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INTRODUCTION 

IN RECENT years intensive interest has been shown in natural 
convection in porous media of various configurations 
including vertical and horizontal layers, sloped layers etc. (see 
Cheng [ 1,2] for a review of the literature). Such interest may be 
explained by the fact that porous media have numerous 
applications in geophysics and energy-related engineering 
problems. In almost all published papers, boundary-layer 
formulation of Darcy’s law and the energy equation were used. 
However, it was shown by Bear [3] that deviations from 
Darcy’s law occur when the Reynolds number based on the 
averaged grain diameter is smaller than about 10. Recently, 
Plumb and Huenefeld [4] made a theoretical investigation of 
the natural convection boundary layers adjacent to a vertical 
heated surface immersed in a saturated porous medium using 
a non-Darcy flow model proposed by Ergun [S]. This paper 
has been followed by other experimental and theoretical 
studies performed by Cheng et al. [6] and Huenefeld and 
Plumb [7]. 

In the present paper the steady non-Darcy natural 
convection from an isothermal slender vertical frustum of a 
cone embedded in a saturated porous medium is considered 
using the Ergun model. We have included the transverse 
curvature terms in thegoverning differential equations, that is, 
the boundary-layer thickness is assumed to be of the same 
order of magnitude as the local radius of the cone or that the 
cone angle is small. Analogous to the analyses of the natural 
convection boundary-layer flow over a frustum of a cone in a 
viscous fluid by Na and Chiou [S, 93 the flow is non-similar. 

Numerical solutions are therefore obtained of the governing 
differential equations using Keller’s box method [lo], a 
method that has been shown to be particularly accurate for 
parabolic problems. Referring to Fig. 1, the flow over a 
frustum of a cone will approach to the flow over a full cone as 
x0 approaches to zero. The results have been compared with 
those of Plumb and Huenefeld [4]. 

GOVERNING EQUATIONS 

Consider non-Darcy natural convection over a slender 
vertical frustum of a cone immersed in a fluid-saturated 
porous medium with constant fluid and medium (isotropic) 
properties and local thermodynamic equilibrium between 
fluid and solid phases. The physical model and the coordinate 
system are shown in Fig. 1. The boundary layer is assumed to 
develop at the leading edge (x = x,,), which means the 
.temperature at the circular base is the same as the temperature 
of the surrounding fluid. Due to the difference in temperature 
between the surface and the surrounding fluid, an upward flow 
is created as a result of buoyancy forces. If the Boussinesq 
approximation is employed it can be shown that the governing 
equations with boundary-layer simplifications can be written 
in terms of dimensionless variables as 

NOMENCLATURE 

f reduced stream function transverse curvature parameter 
Y acceleration due to gravity transformed coordinates 
Gr* modified Grashof number 

5’1 
dimensionless temperature function 

h local heat transfer coefficient Y kinematic viscosity 
k, thermal conductivity of the porous medium P fluid density 
K permeability @ cone angle 
K* inertial coefficient * stream function. 
NU,. local Nusselt number 
r. radius of the cone 

L 
radial distance from the axis of the cone 

Ra:: 
modified Rayleigh number based on x0 Superscript 
modified Rayleigh number based on x prime denotes differentiation with respect 

T temperature to n. 
u, reference velocity 
u,u velocity components in x and Y directions 
x0 location along the surface of the cone 
x,Y rectangular coordinates. Subscripts 

W wall condition 
Greek symbols surroundings condition 

; 
equivalent thermal dilIusivity &C transverse curvature effects 
coefficient of thermal expansion NO-TVC no transverse curvature effects. 
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where 

FIG. 1. Physical model and coordinate system. 

subject to the boundary conditions 

c=o, e=i ati)=O 

u-+0, e-+0 asy+co 

and where 

Gr* = gfiKK*(Tw- T,) cos m//v* 

(3) 

(4) 

is a modified Grashof number expressing the relative 
importance of the inertial effects. The nondimensional 
variables employed are 

z = (x-x0)/x0, 3 = Cylx&#!2, 

li = u/u,. ti = (v/u,)Ra:; 

r = tix, Y)/X,, i, = ro(x)/xo, 

e = (T- w(~,- T.) 

in which 

u, = g@K(T, - T,) cos m//v, Ra, = u&a 

Ra,, being the modified Rayleigh number for a porous 
medium based on the length xg. 

Next, the coordinates (r, rl) and the reduced stream function 
f are defined as follows 

{ = 2, .tl = )?/2”2, f(& tf) = *1- i’a/fa (5) 

where the dimensionless stream function $ is introduced in the 
usual way 

iti = atj/aj, iti = -a$/a2 (6) 
and, for cones 

r. = x sin @ or i, = (1 +i) sin @. (7) 

When the transformations (S)-(7) are applied to equations (2) 
and (3), there results 

[(P,/i)f’]‘+ Gr*{[(io/i)_f-‘]z}’ = e 63) 
[(iop)ey+ (2- l+s)f~=~~f(ae/ay)-~(a(afiag)i (9) 

with the boundary conditions 

f(5,O) = 0, 6&O) = 1, f’(5, co) = 0, e(r, 00) = 0 

(10) 

S =(a/i,)(dr^,/dl) = f(l+x)-’ = 5(1+()-i. (11) 

We note that for cones, we have 

ra = x sin CD, r = r,+y cos @. (12) 

With ra and r thus defined the quantity i/f, appearing in (8) 
and (9), in terms of the similarity variables defined in equations 
(5) becomes 

r/r0 = l+yr”*(l+5)-1 (13) 

where y = cot @ Ra& “’ is a transverse curvature (TVC) 
parameter. Making use of (11), equations (8) and (9), after a 
little algebra, can be written in the form 

f” --y*(i,/r)f’ + 2Gr*(ia/r) [flf” -y*(ro/r)(f’)2] = (r/Pa)e 

(14) 

(i/f,)p + y*t~ + (s + 2 - i)f@ = 5 [f yae/ag) - eyaj-/at)] 

(15) 
with the boundary conditions 

f(5,O) = 0, 8(&O) = 1, f’(L 00) = e(r, co) = 0 (16) 

where 

y* = r”2(1+5)-iy. (17) 

It may be noted that the ratio f//i0 represents the effects of 
transverse curvature. For flows far downstream or for large 
cone angle Cp, y is very close to r,, and the effect of transverse 
curvature is negligible, i.e. y = 0. Under this condition 
equations (14) and (15), in the absence of transverse curvature 
effect, reduce to 

f”+2Gr*f’f” = tJ (18) 

~“+(~+2-l)fw = 5[f'(ae/aC)-eyafiaT)] (19) 

with boundary conditions given by (16). It should be remarked 
that equations (18) and (19) are also non-similar. Also, the 
parameter S approaches 1 when $5) becomes very large and 
the solution of (14) and (15) is expected to approach to the 
similarity solution of the non-Darcy natural convection flow 
over a full cone embedded in a saturated porous medium, 
namely 

f”+2Gr*f’f” = e (20) 

W+(3/2)f8’ = 0 (21) 

with the boundary conditions 

f(o) = 0, e(o) = 1, f’(m) = I = 0. (22) 
The heat transfer coefficient in terms of the Nusselt number 

can be expressed as 

where 

Ro,“2(Nu,)rv, = C - f?‘(L ‘NT, (23) 

Nu, = hx*/x,, h = - k(waY),= d(T, - T,) (24) 

and x* = x -xt,. If the effects of transverse curvature are not 
included in (14) and (15) [i.e. equations (18) and (19) are solved 
instead], a similar expression can be written as 

Ra,“2(Nu,~,,vc = C - 6’(& Oh,av,. (25) 

RESULTS AND DISCUSSION 

Equations (14)-(22) have been solved by a finite-difference 
scheme developed by Keller [ 10). The numerical integration is 
started at r = 0, where I; f’, 6 and 6’ can be found from 
equations (18) and (19), and then proceeds in a stepwise 
manner. The detailed description of the method is presented in 
[ 10,111. Hence, for the sake of brevity, it is not presented here. 
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Table 1. Heat and velocity parameters for e = q = y = 0 

Gr+ 
Present results Plumb and Huenefeld [4] 

@YOI f’(O) P(O) f’(O) 

0.0 -0.44456 1.OOOOO - 044390 wOOOO 
0.01 - 0.44292 0.99020 - 0.44232 0.99020 
0.1 - 0.43042 0.91608 - 0.42969 0.91608 
1.0 -0.36662 0.61803 -0.36617 0.61803 

10.0 -0.25140 0.27016 -0.25126 0.27016 
100.0 -0.15212 0.09512 -0.15186 0.09512 

Y-O.05 
I 

FIG. 2. Effect of the modified Grashof number Gr* on the heat 
transfer parameter. 

0.7 - I I 

G&l.0 

FIG. 3. Effect of the transverse curvature y on the heat transfer 
parameter : - nonsimilar solution ; 0 similar solution. 

----- Gr*isalO 

0.5 b, 

FIG. 4. Effect of the modified Grashof number Gr* on the temperature profiles. 
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-+- 

Y-O.05 

Gr%OO 

---- Gr-*=lO 

-.- Gr*=O 

FIG. 5. Effect of the modified Grashof number Gr* on the velocity profiles. 

We have studied the effect of step sizes Ar] and A& and the edge 
of the boundary layer (qm) on the solution with a view to 
optimize them. Consequently, computations were carried out 
on a DEC-1090 computer with Aq = A< = 0.1,5 < qrn Q 18 
depending on the values of Gr* and r. The results presented 
here are independent of the step sizes and qrn at least up to the 
fourth decimal place. The CPU time taken by a typical data is 
24.1 s. 

In order to assess the accuracy of our method, we have 
compared our results for heat transfer and velocity at the wall 
[Q’(O), f’(O)] for 5 = y = q = 0 with those of Plumb and 
Huenefeld [4] and found them in excellent agreement (see 
Table 1). 

Figures 2 and 3 show the effect of the mod&d Grashof 
number Gr* (which represents the relative importance of the 
inertial effects) and transverse curvature y on the heat transfer 
parameter -O’(&O), respectively. It is observed that the heat 
transfer -@(&O) decreases as Gr* or y increases. This 
behaviour is due to the increase in the thickness of the thermal 
boundary layer caused by the increase in Gr* and y. It is also 
observed that for a prescribed Gr* and y the heat transfer 
- f3’((, 0) increases rapidly with < when 5 is small. For large c 
the change is very small and the heat transfer - L?‘(& 0) attains 
an asymptotic value. For y = 0 and l = 15 the heat transfer 
-O’({,O) is very nearly the same as that of the similarity 
solution obtained from equations (20) and (21) (see Fig. 3). The 
same holds good for the velocity f’(& 0). However, it is not 
shown here for the sake of brevity. 

The effect of the modified Grashof number Gr* on the 
temperature f3 and velocity profilef’ is shown in Figs. 4 and 5, 
respectively. It is observed that both the thermal and velocity 
boundary layers increase as Gr* increases. Consequently, the 
temperature and velocity profiles (0,f’) become less flat as Gr* 
increases. The effect of r is just the opposite. 

CONCLUSIONS 

To conclude, it might be worth mentioning that the heat 
transfer and velocity gradient within the convective boundary 
layer adjacent to a slender vertical frustum of a cone immersed 
in a saturated porous medium are strongly a&ted by the 
modified Grashof number (non-Darcian effect) and transverse 

curvature of the frustum cone. However, the effect is small for 
small 5. Both the velocity and thermal boundary-layer 
thicknesses decrease as the modified Grashof number and 
transverse curvature increase. 
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